Abstract

We propose a framework of baryogenesis and leptogenesis that relies on a supercooled confining phase transition (PT) in the early universe. The baryon or lepton asymmetry is sourced by decays of hadrons of the strong dynamics after the PT, and it is enhanced compared to the non-confining case, which was the only one explored so far. This widens the energy range of the PT, where the observed baryon asymmetry can be reproduced, down to the electroweak scale. The framework then becomes testable with gravity waves (GW) at LISA and the Einstein Telescope. We then study two explicit realisations: one of leptogenesis from composite sterile neutrinos that realises inverse see-saw; one of baryogenesis from composite scalars that is partly testable by existing colliders and flavour factories.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call