Abstract

The barriers to cyclopentadienyl ring rotation in the solid phase have been measured by spin-lattice relaxation time methods for the organometallic complexes CpMn(CO)3 (7.24 kJ mol−1), CpRe(CO)3 (7.15 kJ mol−1), and CpV(CO)4 (7.07 kJ mol−1), where Cp = η5-C5H5. Nonbonded atom–atom potential calculations of the barriers in these complexes and in BzCr(CO)3 (Bz = η6-C6H6) show that the molecular conformation of the Mn and Re compounds is determined by crystal packing forces and that concerted ring motions are possible for the cyclopentadienyl complexes, but not for the benzene chromium tricarbonyl.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call