Abstract

This paper considers the problem of trajectory tracking and collision avoidance for a class of high-order nonlinear strict feedback systems with unknown nonlinearities. The main issue is how to ensure collision avoidance and tracking performance simultaneously in the presence of unknown nonlinear functions. To address the issue, an integral-multiplicative barrier Lyapunov function (BLF) is integrated into the backstepping procedure to remove the dynamic mismatching issue of the existing SUM-type BLF. It has been proven that the proposed adaptive approach ensures both collision avoidance and tracking performance of high-order nonlinear systems in multi-obstacle environments, and all the signals in the closed-loop system are uniformly ultimately bounded (UUB). Simulation results confirm the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.