Abstract

The separation of charge-transfer states into free charges at the donor/acceptor (D/A) interfaces plays a central role in organic solar cells (OSCs). Because of strong Coulomb attraction, the separation mechanisms are elusive, particularly for the high-efficiency non-fullerene (NF) OSCs with low exciton-dissociation driving forces. Here, we demonstrate that the Coulomb barriers can be substantially overcome by electronic polarization for OSCs based on a series of A-D-A acceptors (ITIC, IT-4F, and Y6). In contrast to fullerene-based D/A heterojunctions, the polarization energies for both donor holes and acceptor electrons are remarkably increased from the interfaces to pure regions in the NF heterojunctions because of strong stabilization on electrons but destabilization on holes by electrostatic interactions in the A-D-A acceptors. In particular, upon incorporation of fluorine substituents and electron-poor cores into ITIC, the increased polarization energies can completely compensate for the Coulomb attraction in the IT-4F- and Y6-based heterojunctions, leading to barrierless charge separation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call