Abstract
The hydraulic and swelling properties of a polymerized bentonite (PB), and the self-healing capacity of a geosynthetic clay liner (GCL) using the PB as the core material (PB-GCL) were investigated experimentally. Five different test liquids included of deionized water, NaCl solutions (0.1 M and 0.6 M) and CaCl2 solutions (0.1 M and 0.6 M) were used in this study. The PB exhibited a higher free swelling index (FSI) than that of the untreated bentonite (UB) for all test liquids. For permeability test, under a given void ratio (e), the value of k of the PB is much lower than that of the UB in NaCl and CaCl2 solutions. The PB-GCL specimens demonstrated a higher self-healing capacity than that of the corresponding GCL specimens using the UB (UB-GCL). Specifically, when using a 0.6 M CaCl2 solution for a 20-mm-diameter damage hole, the UB-GCL specimen provided a zero healing ratio (healed damage area/total damage area), but the PB-GCL specimen demonstrated an approximately 76% healing ratio. The results from this study indicate that the PB-GCL provided better barrier performance against cationic liquids with higher cation valence and concentrations compared to that of the UB-GCL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.