Abstract

The chemistry of barrier oxide layers formed on zirconium alloys was investigated using atom probe tomography (APT). Grain boundary segregation of Fe and Ni was observed. The Zr(Fe, Cr)2 particles maintain a constant Zr:Fe:Cr ratio through the oxide until they reach an oxygen content of approximately 50at%, when Fe depletion occurs. Enrichment of hydrogen along oxide crystallite boundaries was observed, which is interpreted as a sign of ingress being localized to grain boundaries. TEM revealed porosity networks around particles and oxide grain boundaries. It is proposed that pores are local reduction sites where H2 evolves on transition metal sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.