Abstract

This article investigates three-layer co-extruded blown film comprised of low-density polyethylene (LDPE)/ethylene–vinyl alcohol (EVOH)/LDPE without adhesion layers. Various thicknesses of pure EVOH were sandwiched by outer LDPE layers blended with linear low-density polyethylene-grafted-maleic anhydride (LLDPE- g-MAH) as compatibilizer in concentrations from 0 wt% to 2.0 wt%. The study found that a mere 3-μ EVOH layer can achieve a 180 times improvement of oxygen barrier properties as compared to the control sample. When the EVOH loading is 10–15 wt% of the total film mass, the addition of LLDPE- g-MAH into the outer layers indicated a positive synergistic effect by enhancing barrier properties. In contrast, when the EVOH loadings are at 5 wt% and 7.5 wt%, the barrier properties of the film was reduced. Layer-to-layer interaction between the LDPE and EVOH was notably improved as demonstrated by a 26–42% increase of interlaminate peel strength in the presence of 0.5–2 wt% LLDPE- g-MAH in all samples. Congruently, the introduction of the LLDPE- g-MAH into the outer LDPE layers also resulted in an increased dart impact toughness and tensile strength for the film. The EVOH crystallinity showed a reduction after adding LLDPE- g-MAH, particularly apparent for the lower EVOH concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.