Abstract

In this article, a motion constraint control scheme is presented for mechanical systems without a modeling process by introducing a barrier Lyapunov function technique and adaptive estimation laws. The transformed error and filtered error surfaces are defined to constrain the motion tracking error in the prescribed boundary layers. Unknown parameters of mechanical systems are estimated using adaptive laws derived from the Lyapunov function. Then, robust control used the conventional sliding mode control, which give rise to excessive chattering, is changed to finite time-based control to alleviate undesirable chattering in the control action and to ensure finite-time error convergence. Finally, the constraint controller from the barrier Lyapunov function is designed and applied to the constraint of the position tracking error of the mechanical system. Two experimental examples for the XY table and articulated manipulator are shown to evaluate the proposed control scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call