Abstract

This paper investigates the finite-time tracking control problem of the hypersonic flight vehicle (HFV) with state constraints. Firstly, a control-oriented model is introduced to enable the application of adaptive backstepping scheme. To meet strict requirements in terms of working conditions of HFV, barrier Lyapunov function is adopted to constrain the tracking errors, while piecewise saturation function is constructed to restrict the virtual signals. To guarantee the finite-time convergent property of HFV dynamics, an adaptive scheme in accordance with finite-time stability theory is designed. Meanwhile, a sliding mode differentiator is employed to estimate the derivatives of the virtual control laws. Novel auxiliary systems are then designed to consider the side effects of the possible saturation and to maintain the finite-time convergent property. In the final stage, the effectiveness and performance of the proposed method is demonstrated by numerical simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.