Abstract
Barrier integrity of electroless NiB and CoWP/NiB thin layers against copper (Cu) diffusion was evaluated by time-dependent dielectric breakdown (TDDB) under bias temperature stress (BTS) using metal oxide semiconductor (MOS) test structures. The BTS tests were carried out also for an approximately 2.2-nm-thick organosilane monolayer (OSML), which has been used as the underlayer of the electroless barrier layers (EBLs). It was found that the barrier integrity of the EBLs was NiB 40 nm > NiB 10 nm > CoWP/NiB 40 nm = CoWP/NiB 10 nm in this order. The field acceleration parameter of the TDDB lifetime was almost the same for all EBLs. Initial failures and wide lifetime distributions were observed for CoWP/NiB when the NiB catalyst layer for CoWP was not thick enough, which is considered to be due to the large surface roughness. In addition, the OSML was found to have some barrier properties. Although the reliability of OSML was inferior to electroless NiB and CoWP/NiB barrier layers, it is considered that the barrier integrity of the EBLs was partially supported by the OSML.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.