Abstract

Silicon oxide (SiO x ) films are widely used as barrier layers in different types of commodity packaging and have caught the interest of manufacturers and researchers alike owing to their high barrier functionality, good acid and alkali resistance, ability to withstand high-temperature and microwave treatments, and good transparency. In this study, we first synthesized polylactic acid (PLA) films by extrusion calendaring and then deposited a SiO x layer on the PLA films by plasma-enhanced chemical vapor deposition to prepare SiO x /PLA composite films. We then evaluated the barrier functionality of the SiO x layer and elucidated its underlying mechanism. We also analyzed its effect on the mechanical properties of the composite films by comparing the oxygen and water vapor transmission rates, soil degradation performances, and surface morphologies of the two types of synthesized films (uncoated and coated with SiO x ). The results showed that, because of the SiO x layer, the barrier properties and mechanical properties of the SiO x /PLA composite films were better than those of the uncoated films. In particular, the oxygen and water vapor transmission rates of the composite films were approximately 8–10 and 6–8 times lower, respectively, than those of the uncoated PLA films. In addition, the SiO x layer lowered the rate of soil degradation of the composite films, owing to which the weight-loss rates of the composite films were also lower than those of the uncoated films. Further, the tensile strengths and elongations at break of the composite films were higher because of the SiO x layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call