Abstract

Abstract An eigenvalue analysis of a divergent barotropic model on a sphere is extended to the formulation of a global optimization problem, whose solution selects an initial perturbation that evolves into the most energetic structure at a finite time interval, τ. The evolution of this perturbation is obtained from companion linear and nonlinear global spectral time-dependent models, and the optimization prediction of perturbation size at time τ is verified. Two zonally asymmetric flows defined by time-mean ECMWF global 300-mb analyses during winter 1985/86 are used to illustrate the application and insights provided by the optimization problem. The dependence of the optimal perturbations on the parameter τ is examined. The optimal perturbations become increasingly localized as τ is decreased to periods on the order of three days. The initial growth rates of these perturbations greatly exceed that of the most unstable normal mode, and also exceed the growth rate of a disturbance with maximum projection on...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call