Abstract

The budget of perturbation kinetic energy is calculated to study barotropic and baroclinic processes associated with convective development in the tropical deep convective regime. The barotropic kinetic-energy conversion is further examined through the derivation and analysis of budget of vertical transport of zonal momentum. The two-dimensional cloud-resolving model simulation data during TOGA COARE are analyzed in this budget study. The analysis of the energy budget shows that while baroclinic conversion from perturbation available potential energy is a major source for the growth of perturbation kinetic energy, barotropic conversion from the mean kinetic energy has significant modification on the variation of perturbation kinetic energy. The general evolution of barotropic conversion is associated with that of the vertical wind shear of the mean circulations, but the significant change in barotropic conversion corresponds to the change in the vertical transport of zonal momentum. Zonal transport of cloud hydrometeor is responsible for the variation of vertical transport of zonal momentum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call