Abstract

Late preterm infants, born between 34 and 36 weeks gestation, have significantly higher morbidity than neonates born at full term, which may be partly related to reduced sensitivity of the arterial baroreflex. The present study assessed baroreflex control of heart rate (HR) and renal sympathetic nerve activity (RSNA) in near-term fetal sheep at 123 ± 1 days gestation. At this age, although fetuses are not fully mature in some respects (term is 147 days), sleep-state cycling is established [between high-voltage, low-frequency (HV) and low-voltage, high-frequency (LV) sleep], and neural myelination is similar to the term human infant. Fetal sheep were instrumented to record blood pressure (BP), HR (n = 15) and RSNA (n = 5). Blood pressure was manipulated using vasoactive drugs, phenylephrine and sodium nitroprusside. In both HV and LV sleep, phenylephrine was associated with increased arterial BP and decreased HR. In HV sleep, phenylephrine was associated with a fall in RSNA, from 124 ± 14 to 58 ± 11% (P < 0.05), but no significant change in RSNA in LV sleep. In contrast, the fall in BP after sodium nitroprusside was associated with a significant increase in HR during LV but not HV sleep, and there was no significant effect of hypotension on RSNA. These data demonstrate that in near-term fetal sheep baroreflex activity is only partly active and is highly modulated by sleep state. Critically, there was no RSNA response to marked hypotension; this finding has implications for the ability of the late preterm fetus to adapt to low BP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call