Abstract

Abstract We have investigated baroclinic instability with cumulus heating using a vertically discrete, linearized, quasi-geostrophic model on a β-plane. Two formulations of cumulus heating were used. The first formulation (η-model) rests on the assumption that heating at all levels is proportional to the vertical p-velocity at the top of the lowest model layer. The second formulation (AS-model) follows the cumulus parameterization proposed by Arakawa and Schubert. We present results for basic states with a constant temperature lapse rate and zonal flows linear in pressure. With both formulations, we found the Green modes for easterly shears destabilized by cumulus heating. We discuss the mechanism of this destabilization along with the vertical structure and energetics of the perturbations. We extended the analyses for basic zonal flows similar to those observed during the Indian summer monsoon season, with the AS-model. The wavelength, phase speed, growth rate and vertical structure corresponding to a pe...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.