Abstract

Abstract The growth rate, phase speed, structure and transfer properties of normal modes of the primitive and quasi-geostrophic equations have been determined by applying an initial value technique to global nonlinear atmospheric models. Results are presented for three zonal flows that have the same vertical structure but quite different meridional variations. Use of a variety of vertical and horizontal resolutions gives important indications of truncation error. Many properties of the unstable modes are much as found in simpler models of baroclinic instability, but spherical geometry has a significant effect on the location of the disturbances, particularly those of low zonal wavenumber, and on eddy momentum fluxes. The latter vary greatly from profile to profile, but mean meridional circulations are such as to give little net variation in the pattern of induced mean zonal surface winds. In fact, the change in vertical shear at the surface is shown to depend in the quasi-geostrophic limit only on the pol...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.