Abstract

The stability of eddies with three-layer stratification is examined experimentally. When the difference in density between the upper two layers is much greater (or less) than that between the lower two layers baroclinic instability on two different lengthscales (the Rossby radii associated with the upper and the lower interfaces) is possible. The vortices are created using modifications of two techniques described by Griffiths & Linden (1981) in their study of two-layer eddies.‘Constant-flux’ eddies are generated by the release of a constant flux of buoyant fluid from a small source positioned at the surface of a two-layer fluid. In a second variation of this experiment, the source is positioned at the interface between two layers and fluid of intermediate density is injected. As the horizontal lengthscale increases, the vortices evolve from a stable to an unstable state. It is showns that the size at which the vortices become unstable may be significantly altered by the presence of a second interface. The results agree qualitatively with the conclusions of a linear stability analysis of quasi-geostrophic three-layer flow in a channel (Smeed 1988), but it is necessary to examine the effects of horizontal shear and Ekman dissipation to explain the experimental results.‘Constant-volume’ eddies are produced by the release of a volume of buoyant fluid, initially contained within a cylindrical barrier, at the surface of a two-layer fluid. After the barrier is removed, the buoyant fluid spreads a distance of the order of the Rossby radius. Similarly, vortices are created by releasing a volume of fluid of density intermediate between the initial two layers. Within a few rotation periods the vortices become unstable to disturbances similar to those observed in two-layer experiments. Qualitative agreement is found between the observed wavelength and the fastest growing mode predicted by the linear stability theory (Smeed 1988). When the disturbances reach large amplitude a change in lengthscale is often observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.