Abstract

AbstractThe 2-month-long mooring data were collected in a straight midsection of Chesapeake Bay to document the lateral circulation driven by along-channel winds. Under upestuary winds, the lateral circulation featured a clockwise (looking into estuary) circulation in the surface layer, with lateral Ekman forcing as the dominant generation mechanism. Under downestuary winds, however, the lateral circulation displayed a structure dependent on the Wedderburn number W: a counterclockwise circulation at small W and two counterrotating vortices at large W. The surface lateral velocity was phase locked to the along-channel wind speed. Analysis of the streamwise vorticity equation showed that the strength and structure of the lateral circulation in this stratified estuary were largely determined by the competition between the tilting of planetary vorticity by along-channel currents and lateral baroclinic forcing due to sloping isopycnals. Under strong, downestuary winds, the lateral baroclinic forcing offset or reversed the tilting of planetary vorticity on the western half of the estuarine channel, resulting in two counterrotating lateral circulation cells. A bottom lateral flow was observed in the deep channel and appeared to be generated by lateral Ekman forcing on the along-channel currents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call