Abstract

The baroclinic response of a stratified coastal embayment (Lunenburg Bay of Nova Scotia) to the observed wind forcing is examined using two numerical models. A linear baroclinic model based on the normal mode approach shows skill at reproducing the observed isotherm movements and sub-surface currents during a time of strong stratification in the bay. The linear model also shows that the isotherm movement in Lunenburg Bay is influenced by the wind forcing and propagation of baroclinic Kelvin waves from neighbouring Mahone Bay. The effects of nonlinearity and topography are investigated using a three-dimensional nonlinear coastal circulation model. The nonlinear model results demonstrate that the nonlinear advection terms generate a gyre circulation at the entrance of Lunenburg Bay, and the slope bottom topography at the mouth of the bay strengthens the sub-surface time-mean inflow on the southern side of the bay. A comparison of model-calculated currents in different numerical experiments clearly shows that baroclinicity plays a dominant role in the dynamics of wind-driven circulation in Lunenburg Bay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.