Abstract

The magnetically frustrated manganese nitride antiperovskite family displays significant changes of entropy under hydrostatic pressure that can be useful for the emerging field of barocaloric cooling. Here we show that barocaloric properties of metallic antiperovskite Mn nitrides can be tailored for room-temperature application through quaternary alloying. We find an enhanced entropy change of $|\mathrm{\ensuremath{\Delta}}{S}_{\mathrm{t}}|=37\phantom{\rule{4pt}{0ex}}\mathrm{J}\phantom{\rule{0.16em}{0ex}}{\mathrm{K}}^{\ensuremath{-}1}\phantom{\rule{0.16em}{0ex}}{\mathrm{kg}}^{\ensuremath{-}1}$ at the ${T}_{t}=300\phantom{\rule{4pt}{0ex}}\mathrm{K}$ antiferromagnetic transition of quaternary ${\mathrm{Mn}}_{3}{\mathrm{Zn}}_{0.5}{\mathrm{In}}_{0.5}\mathrm{N}$ relative to the ternary end members. The pressure-driven barocaloric entropy change of ${\mathrm{Mn}}_{3}{\mathrm{Zn}}_{0.5}{\mathrm{In}}_{0.5}\mathrm{N}$ reaches $|\mathrm{\ensuremath{\Delta}}{S}_{\mathrm{BCE}}|=20\phantom{\rule{4pt}{0ex}}\mathrm{J}\phantom{\rule{0.16em}{0ex}}{\mathrm{K}}^{\ensuremath{-}1}\phantom{\rule{0.16em}{0ex}}{\mathrm{kg}}^{\ensuremath{-}1}$ in 2.9 kbar. Our results open up a large phase space where compounds with improved barocaloric properties may be found.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.