Abstract
A mechanochemical reaction is a reaction induced by mechanical energy. A general accepted model for this type of reaction consists of a first-order perturbation on the associated potential energy surface (PES) of the unperturbed molecular system due to mechanical stress or pulling force. Within this theoretical framework, the so-called optimal barrier breakdown points or optimal bond breaking points (BBPs) are critical points of the unperturbed PES where the Hessian matrix has a zero eigenvector that coincides with the gradient vector. Optimal BBPs are "catastrophe points" that are particularly important because their associated gradient indicates how to optimally harness tensile forces to induce reactions by transforming a chemical reaction into a barrierless process. Building on a previous method based on a nonlinear least-squares minimization to locate BBPs (Bofill et al., J. Chem. Phys. 2017, 147, 152710-10), we propose a new algorithm to locate BBPs of any molecular system based on the Gauss-Newton method combined with the Barnes update for a nonsymmetric Jacobian matrix, which is shown to be more appropriate than the Broyden update. The efficiency of the new method is demonstrated for a multidimensional model PES and two medium size molecular systems of interest in enzymatic catalysis and mechanochemistry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.