Abstract

Biofouling, the attachment and growth of organisms on submerged, man-made surfaces, has plagued ship operators for at least 2500 years. Accumulation of biofouling, including barnacles and other sessile marine invertebrates, increases the frictional resistance of ships' hulls, resulting in an increase in power and in fuel consumption required to make speed. Scientists and engineers recognized over 100 years ago that in order to solve the biofouling problem, a deeper understanding of the biology of the organisms involved, particularly with regard to larval settlement and metamorphosis and adhesives and adhesion, would be required. Barnacles have served as an important tool in pursuing this research. Over the past 20 years, the pace of these studies has accelerated, likely driven by the introduction of environmental regulations banning the most effective biofouling control products from the market. Research has largely focused on larval settlement and metamorphosis, the development of new biocides, and materials/surface science. Increased research has so far, however, failed to result in commercial applications. Two recent successes (medetomidine/Selektope(®), surface-bound noradrenaline) build on our improving understanding of the role of the larval nervous system in mediating settlement and metamorphosis. New findings with regard to the curing of barnacle adhesives may pave the way to additional successes. Although the development of most current biofouling control technologies remains largely uninfluenced by basic research on, for example, the ability of settling larvae to perceive surface cues, or the nature of the interaction between organismal adhesives and the substrate, newly-developed materials can serve as useful probes to further our understanding of these processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call