Abstract

Bacterial cellulose (BC) is an ideal candidate for wound dressings due to its natural origin, exceptional water-holding capacity, pliability, biocompatibility, and high absorption capability. However, the lack of essential antimicrobial activity limits its biomedical applications. This study reported BC-based wound dressings containing silk fibroin protein (SF), offering the potential for biomimetic properties, and (−)-epigallocatechin-3-gallate (EGCG) for polyphenol-assisted surface modification to promote infectious wound healing. Glycerol was used as the carbon source to promote the formation of an adhesive layer by facilitating the β-sheet folding of SF, and different concentrations of EGCG were employed to interact with SF through strong hydrogen bonding facilitated by the polyphenolic groups. The functionalized membrane exhibited outstanding water-holding capacity, swelling ratio, and degradation properties, along with enhanced hydrophilicity, adhesiveness, and a remarkable free radical scavenging ability. Both in vitro and in vivo experiments confirmed its potent bacteriostatic activity. The composite membrane displayed excellent biocompatibility, including cellular and hemocompatibility. Importantly, it effectively promoted wound healing in murine back infections. These findings suggest the significant feasibility of the innovative modification approach, and that functionalized membranes have great potential as wound-dressing materials for infection management in future clinical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.