Abstract

AbstractThe yield potential of 60 spring barley varieties was examined under controlled drought and natural conditions in the years 2011–2013. The studied varieties were genotyped with the 1536‐SNP barley oligonucleotide assay. In experiments with controlled drought conditions, the grain yield, 1,000‐grain weight, number of productive tillers and length of the main stem were measured. Physicochemical properties such as the specific surface area, water adsorption energy, fractal dimension and nanopore radius of the plant leaves were determined and correlated with yield‐forming traits. Field trials were conducted over 3 years at 14 locations, where along with the yield‐related traits, monthly rainfall and average temperature were monitored. Five varieties of high yield and five varieties relatively stable under both semi‐controlled and natural conditions were distinguished. The yield‐related traits observed in various locations were related to environmental variables relevant to water availability. The sum of the rainfall in April and May was negatively correlated with the 1,000‐grain weight and positively with the plant height. Positive relationships were found between plant height and temperatures in June and July. Five markers detected earlier as linked to the quantitative trait loci in the mapping populations were identified to have a coherent effect among varieties of various pedigree.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call