Abstract

A Barker sequence is a finite sequence of integers, each ±1, whose aperiodic autocorrelations are all as small as possible. It is widely conjectured that only finitely many Barker sequences exist. We describe connections between Barker sequences and several problems in analysis regarding the existence of polynomials with ±1 coefficients that remain flat over the unit circle according to some criterion. First, we amend an argument of Saffari to show that a polynomial constructed from a Barker sequence remains within a constant factor of its L2 norm over the unit circle, in connection with a problem of Littlewood. Second, we show that a Barker sequence produces a polynomial with very large Mahler’s measure, in connection with a question of Mahler. Third, we optimize an argument of Newman to prove that any polynomial with ±1 coefficients and positive degree n−1 has L1 norm less than √ n− .09, and note that a slightly stronger statement would imply that long Barker sequences do not exist. We also record polynomials with ±1 coefficients having maximal L1 norm or maximal Mahler’s measure for each fixed degree up to 24. Finally, we show that if one could establish that the polynomials in a particular sequence are all irreducible over Q, then an alternative proof that there are no long Barker sequences with odd length would follow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.