Abstract
Barium (Ba)-induced phytotoxicity at 100, 1000, or 5000 microM Ba in soybean plants (Glycine max) was investigated under hydroponic culture conditions. Soybean growth and leaf photosynthetic activity were significantly inhibited by all three levels of Ba treatments. In the case of photosynthetic activity, 5000 microM Ba treatment shutdown stomatal opening and perturbed carbon fixation metabolism and translocation. However, 100 and 1000 microM Ba treatments shut down stomatal opening and inhibited carbon fixation, but without perturbation of leaf carbon fixation-related metabolism. Potassium (K) absorption by soybean roots was also reduced in all three Ba treatments. This decreased K absorption reduced K localization at guard cells. Barium accumulation in guard cells also inhibited K transport from epidermal cells to guard cells. This lack of K in guard cells resulted in stomatal closure. As a result of inhibition of K transport into guard cells and stomatal shutdown, photosynthetic activity and plant productivity were inhibited. Our experiment indicates that Ba has phytotoxic effects on soybean plants by inhibiting photosynthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Archives of Environmental Contamination and Toxicology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.