Abstract

The study of the effect of different chelating agents in the Pechini method on the morphology has been a promising strategy that can be used for practical tuning of the nanoparticle's morphology and hence the electrochemical hydrogen storage capacity. In the current study, the conventional Pechini sol-gel approach was used to prepare the Ba2Co9O14 nanoparticles as a novel hydrogen storage material. The X-ray diffraction investigation approved the formation of Ba2Co9O14 with a Hexagonal crystal structure for all of the synthesized samples. The scanning electron microscopy (SEM) revealed when citric acid was used as a chelating agent, nanoparticles with finer and more uniform morphology were obtained rather than other chelating sources. The transmission electron microscopy (TEM) showed in the presence of citric acid; the size of the synthesized nanoparticles was between 14 and 24 nm. According to the Diffuse Reflectance Spectroscopy (DRS) analysis, the calculated bandgap of synthesized nanoparticles was approximately 3.2 eV, which indicates that synthesized nanoparticles were semiconductors in essence. The electrochemical hydrogen adsorption/desorption results showed that the sample synthesized by the citric acid has an enhancement in electrochemical hydrogen storage of approximately 800 mAh/g after 15 cycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call