Abstract
We construct cellular resolutions for monomial ideals via discrete Morse theory. In particular, we develop an algorithm to create homogeneous acyclic matchings and we call the cellular resolutions induced from these matchings Barile–Macchia resolutions. These resolutions are minimal for edge ideals of weighted oriented forests and (most) cycles. As a result, we provide recursive formulas for graded Betti numbers and projective dimension. Furthermore, we compare Barile–Macchia resolutions to those created by Batzies and Welker and some well-known simplicial resolutions. Under certain assumptions, whenever the above resolutions are minimal, so are Barile–Macchia resolutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.