Abstract

IntroductionThe effects of the maternal nutritional environment on the growth and metabolism of the offspring, and its impacts on health in adult life are defined as metabolic programming. Thus, the objective of this study was to evaluate the effects of Roux-en-Y gastric bypass (RYGB) on the morphology of muscle fiber and neuromuscular junction (NMJ) of the offspring of rats submitted to RYGB. MethodsThree-week-old Wistar rats were separated into two groups: 1) CAF SHAM which received a cafeteria diet and was submitted to a sham operation and 2) CAF RYGB, which received a cafeteria diet and was submitted to RYGB. The first generation (F1) offspring (male) was named according to the treatment of mothers as CAF SHAM-F1 and CAF RYGB-F1 and received a standard diet after weaning. At 17 weeks, the animals were euthanized, and the extensor digitorum longus muscle (EDL) was collected and processed in light microscopy and transmission electron microscopy for morphological and morphometric analysis. ResultsThe CAF RYGB-F1 group showed a reduction in the weight of the EDL muscle and also a reduction in the area of type I, IIa and IIb fibers and a nucleus/fiber ratio. This same group also showed an increase in the capillary density and myofibrillar disorganization and in the Z-line, as well as a reduction in the area of the NMJs. ConclusionThe RYGB surgery in mothers produced morphological changes in the skeletal striated muscles of the offspring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.