Abstract
It is shown that Newton-Cartan theory of gravitation can best be formulated on a five-dimensional extended space-time carrying a Lorentz metric together with a null parallel vector field. The corresponding geometry associated with the Bargmann group (nontrivially extended Galilei group) viewed as a subgroup of the affine de Sitter group AO(4,1) is thoroughly investigated. This new global formalism allows one to recast classical particle dynamics and the Schroedinger equation into a purely covariant form. The Newton-Cartan field equations are readily derived from Einstein's Lagrangian on the space-time extension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.