Abstract

We study unanimity bargaining on the division of a surplus in the presence of monotonicity constraints. The monotonicity constraints specify a complete order on the players, which has to be respected by the shares in the surplus the players obtain in any bargaining outcome. A player higher in the order should not receive a lower share of the surplus. We analyze the resulting subgame perfect equilibria in stationary strategies and show that they are characterized by the simpler notion of bargaining equilibrium. Bargaining equilibria are shown to be unique and to have the property that players ranked strictly higher obtain strictly higher shares in the surplus. The key question is whether the bargaining advantage of a higher-ranked player persists when the probability of breakdown of bargaining tends to zero. We argue that such is not the case by showing that bargaining equilibria have a unique limit equal to an equal division of the surplus. It then follows that the limit also coincides with the Nash bargaining solution for this problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.