Abstract
BRCA1 is a tumor suppressor with several important nuclear functions. BRCA1 has no known cytoplasmic functions. We show here that the two previously identified nuclear localization signals (NLSs) are insufficient for nuclear localization of BRCA1 due to the opposing action of an NH2-terminal nuclear export signal. In transfected breast cancer cells, BRCA1 nuclear localization requires both the NLSs and NH2-terminal RING domain region; mutating either of these sequences shifts BRCA1 to the cytoplasm. The BRCA1 RING element mediates nuclear import via association with BARD1, and this is not affected by cancer-associated RING mutations. Moreover, BARD1 directly masks the BRCA1 nuclear export signal, and the resulting block to nuclear export is requisite for efficient import and nuclear localization of ectopic and endogenous BRCA1. Our results explain why BRCA1 exon 11 splice variants, which lack the NLSs but retain the RING domain, are frequently detected in the nucleus and in nuclear foci in vivo. In fact, co-expression of BARD1 promoted formation of DNA damage-induced nuclear foci comprising ectopic wild-type or NLS-deficient BRCA1, implicating BARD1 in nuclear targeting of BRCA1 for DNA repair. Our identification of BARD1 as a BRCA1 nuclear chaperone has regulatory implications for its reported effects on BRCA1 protein stability, ubiquitin ligase activity, and DNA repair.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.