Abstract

Plant DNA barcoding serves as an effective approach to building community phylogenies and increasing our understanding of the factors that determine plant community assemblages. The aims of the study were to (i) barcode macrophytes with high estuarine fidelity and (ii) to determine the phylogenetic diversity (PD) of selected South African estuaries for conservation prioritisation. Three DNA barcoding gene regions (rbcLa, matK, and trnH-psbA) were assessed, and community phylogenies were constructed for 270 estuaries. Generally, the matK barcode had the greatest discrimination success rate of 67.4% (parsimony informative sites = 418). Closely related species formed clades that also represent estuarine habitat types. Estuaries with high phylogenetic diversity along the southeast coast were associated with a combination of mangrove and salt marsh habitats. Species richness was strongly and significantly correlated with PD (r = 0.93; p < 0.000). Based on mean pairwise distance (MPD), more temperate estuaries (56) showed significant phylogenetic clustering compared to subtropical estuaries (24) (p < 0.05). Similarly, based on mean nearest taxon distance (MNTD), significant phylogenetic clustering was highest in temperate estuaries (50) compared to subtropical estuaries (12) (p < 0.05). This suggests that the coexistence of plant species in estuaries is structured by both biotic and abiotic interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call