Abstract

Barbiturates are frequently used for the treatment of intracranial hypertension after brain injury but their application is associated with a profound increase in the infection rate. The mechanism of barbiturate-induced failure of protective immunity is still unknown. We provide evidence that nuclear factor of activated T cells (NFAT), an essential transcription factor in T cell activation, is a target of barbiturate-mediated immunosuppression in human T lymphocytes. Treatment of primary CD3+ lymphocytes with barbiturates inhibited the PMA and ionomycin induced increase in DNA binding of NFAT, whereas the activity of other transcription factors, such as Oct-1, SP-1, or the cAMP response element-binding protein, remained unaffected. Moreover, barbiturates suppressed the expression of a luciferase reporter gene under control of NFAT (stably transfected Jurkat T cells), and of the cytokine genes interleukin-2 and interferon-gamma that contain functional binding motifs for NFAT within their regulatory promotor domains (human peripheral blood CD3+ lymphocytes). Neither GABA receptor-initiated signaling nor direct interactions of barbiturates with nuclear proteins affected the activity of NFAT. In contrast, barbiturates suppressed the calcineurin-dependent dephosphorylation of NFAT in intact T cells and also inhibited the enzymatic activity of calcineurin in a cell-free system, excluding upstream regulation. Thus, our results demonstrate a novel mechanism of direct inhibition of the calcineurin/calmodulin complex that may explain some of the known immunosuppressive effects associated with barbiturate treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call