7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1097/00000542-197510000-00009
Copy DOIJournal: Anesthesiology | Publication Date: Oct 1, 1975 |
Citations: 86 |
Using isolated rat aortic strips (AS) and portal veins (PV), it was found that all of the barbiturates studied (thiopental, secobarbital, pentobarbital, amobarbital, phenobarbital, and barbital): a) inhibit development of spontaneous mechanical activity (vasomotion) in AS and PV in concentrations used to induce surgical anesthesia or concentrations used for anticonvulsive therapy; b) dose-dependent attenuate contractions induced by epinephrine and potassium (K+); c) cause non-competitive displacement of the dose-response curves of these vasoactive compounds; d) attenuate calcium (Ca++)-induced contractions of K+-depolarized AS and PV; e) rapidly relax drug-induced, as well as Ca++-induced, contractions of AS and PV. In addition, the data indicate that: a) rat portal venous smooth muscle is more sensitive to the inhibitory actions of barbiturates than is rat aortic smooth muscle, and b) thiopental, but none of the other barbiturates, can elicit dose-dependent contractions of AS. Concentrations of barbiturates known to be present during induction of surgical anesthesia can exert depressant effects on at least two types of vascular smooth muscle that may be related to actions on movement and/or translocation of Ca++.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.