Abstract

Benzo[a]pyrene (BaP) is a ubiquitous environmental pollutant and carcinogen that is frequently found in particulate matter, with a diameter of ≤2.5 μm (PM2.5). It has been reported to interrupt the normal reproductive system, but the exact molecular basis has not been clearly defined. To understand the underlying mechanisms regarding how BaP exposure disrupts female fertility, we evaluated oocyte quality by assessing the critical regulators and events during oocyte meiotic maturation and fertilization. We found that BaP exposure compromised the mouse oocyte meiotic progression by disrupting normal spindle assembly, chromosome alignment, and kinetochore-microtubule attachment, consequently leading to the generation of aneuploid eggs. In addition, BaP administration significantly decreased the fertilization rate of mouse eggs by reducing the number of sperm binding to the zona pellucida, which was consistent with the premature cleavage of N terminus of zona pellucida sperm-binding protein 2 and precocious exocytosis of ovastacin. Furthermore, BaP exposure interfered with the gamete fusion process by perturbing the localization and protein level of Juno. Notably, we found that BaP exposure induced oxidative stress with an increased level of reactive oxygen species and apoptosis in oocytes and thereby led to the deterioration of critical regulators and events during oocyte meiotic progression and fertilization. Our data document that BaP exposure reduces female fertility via impairing oocyte maturation and fertilization ability induced by oxidative stress and early apoptosis in murine models.-Zhang, M., Miao, Y., Chen, Q., Cai, M., Dong, W., Dai, X., Lu, Y., Zhou, C., Cui, Z., Xiong, B. BaP exposure causes oocyte meiotic arrest and fertilization failure to weaken female fertility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.