Abstract
Data mining applications have been getting more attention in general business areas, but there is a need to use more of these applications in accounting areas where accounting deals with large amounts of both financial and non-financial data. The purpose of this research is to test the effectiveness of a Multiple Criteria Linear Programming (MCLP) approach to data mining for bankruptcy prediction using Japanese bankruptcy data. Our empirical results show that Ohlson's (1980) predictor variables perform better than Altman's (1968) predictor variables using 1990s Japanese financial data. Our Type I (misclassification of bankrupt as non-bankrupt firms) prediction rate using the MCLP approach, Ohlson's (1980) variables and 1990s Japanese financial data is much higher than that reported by Kwak et al. (2005) using the MCLP approach, Ohlson's (1980) variables and 1990s US data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Business Intelligence and Data Mining
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.