Abstract
It is very important for financial institutions which are capable of accurately predicting business failure. In literature, numbers of bankruptcy prediction models have been developed based on statistical and machine learning techniques. In particular, many machine learning techniques, such as neural networks, decision trees, etc. have shown better prediction performances than statistical ones. However, advanced machine learning techniques, such as classifier ensembles and stacked generalization have not been fully examined and compared in terms of their bankruptcy prediction performances. The aim of this chapter is to compare two different machine learning techniques, one statistical approach, two types of classifier ensembles, and three stacked generalization classifiers over three related datasets. The experimental results show that classifier ensembles by weighted voting perform the best in term of predication accuracy. On the other hand, for Type II errors on average stacked generalization and single classifiers perform better than classifier ensembles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.