Abstract

ABSTRACTGroundwater seepage can lead to the erosion and failure of streambanks and hillslopes. Two groundwater instability mechanisms include (i) tension failure due to the seepage force exceeding the soil shear strength or (ii) undercutting by seepage erosion and eventual mass failure. Previous research on these mechanisms has been limited to non‐cohesive and low cohesion soils. This study utilized a constant‐head, seepage soil box packed with more cohesive (6% and 15% clay) sandy loam soils at prescribed bulk densities (1.30 to 1.70 Mg m−3) and with a bank angle of 90° to investigate the controls on failure mechanisms due to seepage forces. A dimensionless seepage mechanism (SM) number was derived and evaluated based on the ratio of resistive cohesion forces to the driving forces leading to instability including seepage gradients with an assumed steady‐state seepage angle. Tension failures and undercutting were both observed dependent primarily on the saturated hydraulic conductivity, effective cohesion, and seepage gradient. Also, shapes of seepage undercuts for these more cohesive soils were wider and less deep compared to undercuts in sand and loamy sand soils. Direct shear tests were used to quantify the geotechnical properties of the soils packed at the various bulk densities. The SM number reasonably predicted the seepage failure mechanism (tension failure versus undercutting) based on the geotechnical properties and assumed steady‐state seepage gradients of the physical‐scale laboratory experiments, with some uncertainty due to measurement of geotechnical parameters, assumed seepage gradient direction, and the expected width of the failure block. It is hypothesized that the SM number can be used to evaluate seepage failure mechanisms when a streambank or hillslope experiences steady‐state seepage forces. When prevalent, seepage gradient forces should be considered when analyzing bank stability, and therefore should be incorporated into commonly used stability models. Copyright © 2013 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.