Abstract

Intercropping plays an indispensable role in sustainable agriculture. The response of bandwidth row ratio configuration to crop interspecific relationships and land productivity in the maize–soybean intercropping system (MSI) is still unclear. A 2-year field experiment was conducted with sole maize (SM) and sole soybean (SS), two different bandwidths (2.4 m (B1), 2.8 m (B2)), two different maize and soybean row ratios (2:3 (R1), and 2:4 (R2)) for MSI. The results showed that intercropping had advantages for land productivity compared with sole planting. Intercropping cropping had significant differences on crop yield under different intercropping treatments. The 2-yr average land equivalent ratio (LER, 1.59) and group yield under the intercropping patterns of B1R2 were significantly higher than other intercropping treatments (p < 0.05). With a bandwidth of 2.4 m and planting four rows of intercropped soybean, the total LER and group yield increased by 7.57% and 10.42%, respectively, compared to planting three rows of soybean. Intercropped maize was the dominant species and also had a higher nutrient aggressivity than intercropped soybean. The complementarity effect was higher than the select effect in the MSI system, and intercropping advantage was mainly derived from the complementarity effect, which was significantly correlated with intercropped maize yield. Nitrogen and phosphorus nutrient aggressivity in intercropped maize showed significant correlations with group yield and intercropped maize yield. In conclusion, bandwidth 2.4 m, row ratio 2:4 was a reasonable planting pattern because of its superior land productivity, crop nutrients uptake advantage, and harmonious interspecific relationship, which could provide a reference for MSI promotion and application research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call