Abstract

Cooperative communication is becoming an attractive technology as it can greatly improve the spatial diversity without additional antennas. This novel communication paradigm can effectively reduce power consumption via multi-node cooperation and resource allocation. This paper studies the energy-efficient node-disjoint multi-path routing for a given source-destination pair by joint route construction, relay assignment and power allocation methods. We first define a new bandwidth-power aware cooperative multi-path routing (BP-CMPR) problem, and formally prove its NP-hardness. The paper then presents a polynomial-time heuristic algorithm CMPR to solve the above problem. The algorithm adopts the Suurballe's method to find k minimal-weight node-disjoint paths from source to destination on a weighted graph. Then, dynamic programming is used to implement relay assignment and power allocation. The theoretical analysis shows that CMPR can reach approximation factors of 2 and \frac{4}{3} for BP-CMPR under the amplify-and-forward and decode-and-forward schemes respectively. The distributed version of the algorithm DCMPR is also presented for this problem. We also prove that both CMPR and DCMPR construct the same cooperative multi-path routing, and show via simulations that the performance of the proposed scheme is more than 15% better than that of a traditional multi-path routing scheme, and close to the optimal result for BP-CMPR in variety of situations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.