Abstract

We demonstrate that harmonic sidebands of an electro-optic modulator's driving frequency can be used as the local oscillator in a photonic down-mixing process in order to significantly enhance the bandwidth of near-field, electro-optic, microwave measurements. The creation of second- and third-order-harmonic modulation sidebands on a laser-diode output are described, with heterodyne down-conversion of microwave signals taking place within an electro-optic sensor crystal. The measurement bandwidth of an electro-optic microwave probe can thus be enhanced by as much as a factor of three with respect to the use of conventional, fundamental-harmonic sidebands. Carrier-sideband analysis from the measured optical spectrum indicates that millimeter-wave-frequency local-oscillator sidebands can be created using a Ku-band electro-optic modulator and that the electro-optic-signal-modulation depth can be enhanced by suppressing the light-beam carrier component. Transverse near-field distributions from high frequency patch antennas are extracted using both second- and third-order-harmonic sidebands.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.