Abstract

A technique for bandwidth enhancement of a given amplifier is presented. Adding several interstage passive matching networks enables the control of transfer function and frequency response behavior. Parasitic capacitances of cascaded gain stages are isolated from each other and absorbed into passive networks. A simplified design procedure, using well-known low-pass filter component values, is introduced. To demonstrate the feasibility of the method, a CMOS transimpedance amplifier (TIA) is implemented in a 0.18-/spl mu/m BiCMOS technology. It achieves 3 dB bandwidth of 9.2 GHz in the presence of a 0.5-pF photodiode capacitance. This corresponds to a bandwidth enhancement ratio of 2.4 over the amplifier without the additional passive networks. The transresistance gain is 54 dB/spl Omega/, while drawing 55 mA from a 2.5-V supply. The input sensitivity of the TIA is -18 dBm for a bit error rate of 10/sup -12/.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.