Abstract

The performances of QPSK in the presence of cochannel interference in both nonfading and fading environments are analyzed. Three approaches for representing the cochannel interference are investigated. These are a precise error probability method, a sum of sinusoids (sinusoidal) model, and a Gaussian interference model. In addition to determining precise results for the performance of QPSK in cochannel interference, we examine the validity of these two interference models in both additive white Gaussian noise (AWGN) environments and in different flat fading environments; Rayleigh, Ricean, and Nakagami. Nyquist pulse shaping is considered and the effects of cross channel ISI produced by the cochannel interference are accounted for in the precise interference model. Also accounted for are the random symbol and carrier timing offsets of the interfering signals. Two performance criteria are considered. These are the average bit error rate and the interference penalty. The latter is defined as the increase in signal-to-noise power ratio (SNR) required by a system with cochannel interference in order to maintain the same BER as a system without interference. Attention is given, in particular, to the outdoor microcellular fading environment. In this environment, the fading experienced by the interfering signals may be represented by a Rayleigh-fading model while the fading experienced by the desired signal may be represented by a Ricean or a Nakagami-fading model. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call