Abstract

Concatenated codes consisting of trellis inner codes and Reed-Solomon outer codes are considered to achieve large coding gains with small bandwidth expansion in the presence of frequency-nonselective slow Rician fading. Both errors-only and errors-erasures decoding algorithms for outer codes are applied. New upper bounds on bit error probability performance in the presence of fading are obtained and compared with simulation results for zero channel memory. The effect of interleaving in eliminating channel memory is investigated. The performance gains that are achieved by the coding scheme relative to the reference uncoded systems are illustrated via some examples. >

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call