Abstract

Gravity fields derived from GPS tracking of the three Swarm satellites have shown artifacts near the geomagnetic equator, where the carrier phase tracking on the L2 frequency is unable to follow rapid ionospheric path delay changes due to a limited tracking loop bandwidth of only 0.25 Hz in the early years of the mission. Based on the knowledge of the loop filter design, an analytical approach is developed to recover the original L2 signal from the observed carrier phase through inversion of the loop transfer function. Precise orbit determination and gravity field solutions are used to assess the quality of the correction. We show that the a posteriori RMS of the ionosphere-free GPS phase observations for a reduced-dynamic orbit determination can be reduced from 3 to 2 mm while keeping up to 7% more data in the outlier screening compared to uncorrected observations. We also show that artifacts in the kinematic orbit and gravity field solution near the geomagnetic equator can be substantially reduced. The analytical correction is able to mitigate the equatorial artifacts. However, the analytical correction is not as successful compared to the down-weighting of problematic GPS data used in earlier studies. In contrast to the weighting approaches, up to 9–10% more kinematic positions can be retained for the heavily disturbed month March 2015 and also stronger signals for gravity field estimation in the equatorial regions are obtained, as can be seen in the reduced error degree variances of the gravity field estimation. The presented approach may also be applied to other low earth orbit missions, provided that the GPS receivers offer a sufficiently high data rate compared to the tracking loop bandwidth, and provided that the basic loop-filter parameters are known.

Highlights

  • ESA’s three satellite mission Swarm was launched in November 2013 (Friis-Christensen et al 2008)

  • Hemp denotes the empirical transfer function derived from an artificial signal, HCU is the continuous update approximation and Hfit the approximated transfer function, see (18). To cope with this limitation, we evaluated the transfer function of the discrete-update loop implementation according to Fig. 2 for a signal covering the frequency range of interest

  • The limited bandwidth for L2 carrier phase tracking in the Swarm GPS receiver is responsible for increased carrier phase errors occurring near the geomagnetic equator and related artifacts in kinematic position solutions and gravity field models

Read more

Summary

Introduction

ESA’s three satellite mission Swarm was launched in November 2013 (Friis-Christensen et al 2008). The satellites were placed in polar low Earth orbits with initial altitudes of 480 km (Swarm A, C) and 530 km (Swarm B) after the commissioning phase. The three satellites are equipped with geodetic-grade dual-frequency GPS receivers provided by Rüstungs Unternehmen AG (RUAG). Due to the gap between the dedicated earth gravity field missions GRACE (Gravity Recovery And Climate Experiment; Tapley et al 2004) and GRACE-Follow On, Swarm

70 Page 2 of 13
70 Page 4 of 13
70 Page 6 of 13
Results
70 Page 8 of 13
70 Page 10 of 13
A Original A L2-correction A Weighting
Findings
Summary and Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call