Abstract

Decentralized detection is one of the key tasks that a wireless sensor network (WSN) is faced to accomplish. Among several decision criteria, the Rao test is able to cope with an unknown (but parametrically-specified) sensing model, while keeping computational simplicity. To this end, the Rao test is employed in this paper to fuse multivariate data measured by a set of sensor nodes, each observing the target (or the desired) event via a nonlinear mapping function. In order to meet stringent energy/bandwidth requirements, sensors quantize their vector-valued observations into one or few bits and send them over error-prone (to model low-power communications) reporting channels to a fusion center (FC). Therein, a global (better) decision is taken via the proposed test. Its closed form and asymptotic (large-size WSN) performance are obtained, and the latter leveraged to optimize quantizers. The appeal of the proposed approach is confirmed via simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.