Abstract

In this paper we perform a numerical analysis of fiber Bragg grating (FBG) bandwidth characteristics for oil and gas sensing applications. It is shown that the grating length (Lg) and the change in the refractive index profile (δn) represent a key parameters in contributing to high FBG sensor performance. The analysis based on solving coupled mode equations were carried out using MATHCAD software. Results show that the changes in the Lg and δn affect the FBG bandwidth significantly at a time when demand for bandwidth is growing in oil and gas sensing applications. The obtained results are very important for FBG sensor applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call