Abstract
The optimal angle bandwidth and wavelength bandwidth of fourth-harmonic generation (FHG) and fifth-harmonic generation (FIFHG) of the 1064[Formula: see text]nm laser are analyzed based on the numerical calculation results of non-collinear type-I and type-II phase matching processes for general nonlinear uniaxial crystals with 1[Formula: see text]cm length. The non-collinear phase matching angles and effective nonlinear coefficients of FHG and FIFHG are calculated. The optimal angle bandwidth and wavelength bandwidth are obtained. The results are beneficial to broadband and efficient non-collinear phase matching FHG and FIFHG experiments and studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Nonlinear Optical Physics & Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.