Abstract

We describe a new method for numerical integration, dubbed bandlimited collocation implicit Runge–Kutta (BLC-IRK), and compare its efficiency in propagating orbits to existing techniques commonly used in Astrodynamics. The BLC-IRK scheme uses generalized Gaussian quadratures for bandlimited functions. This new method allows us to use significantly fewer force function evaluations than explicit Runge–Kutta schemes. In particular, we use a low-fidelity force model for most of the iterations, thus minimizing the number of high-fidelity force model evaluations. We also investigate the dense output capability of the new scheme, quantifying its accuracy for Earth orbits. We demonstrate that this numerical integration technique is faster than explicit methods of Dormand and Prince 5(4) and 8(7), Runge–Kutta–Fehlberg 7(8), and approaches the efficiency of the 8th-order Gauss–Jackson multistep method. We anticipate a significant acceleration of the scheme in a multiprocessor environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.